Cryptographic Protocol Analysis via Strand Spaces

Joshua D. Guttman
Jonathan C. Herzog
F. Javier Thayer

September 2000

Outline of Introductory Talk

To study the Dolev-Yao problem

- What is a cryptographic protocol?
- What is the environment in which it is used?
- Identify security goals for cryptographic protocols
- Model crypto protocols and their security goals
- Show how to use analysis method: How to
 - Discover flaws
 - Prove no flaws exist
 - Find if combining protocols creates flaws
 - How to design protocols without flaws
- Justify analysis method

The Problem

- What is a cryptographic protocol?
 - Short, convention-bound sequence of messages
 - Uses cryptography
 - Aims at authentication, secret key distribution, etc.
- Cryptographic protocols are often wrong
 - Active attacker can subvert goals
 - May fail even if cryptography ideal
 - Hard to predict which protocols achieve what goals
- Cryptographic protocols are important

 Central to security for communications, networks, distributed systems, e-commerce

The Dolev-Yao Problem

+

- Given a protocol, and assuming all cryptography perfect, find
 - What secrecy properties
 - What authentication properties

the protocol achieves

- Find counterexamples to other properties
 - Unintended services useful
- What does perfect cryptography mean?
 - No collisions
 - Need key to make encrypted value
 - Need key to recover plaintext

Needham-Schroeder Protocol, 1978

Needham-Schroeder: Intended Run

Needham-Schroeder: Undesirable Run

Due to Gavin Lowe (1995)

Diagnosis of a Failure

• Who was duped?

- Not A: Meant to share N_1 , N_2 with P
- B: Thinks he shares N_1 , N_2 only with A
 - Secrecy failed: P knows values
 - Authentication failed:
 A had no run with B
- How? A offered P a service:
 - Gave P nonce N_1
 - Promised to translate $\{ \hspace{-0.05cm} \{ \hspace{-0.05cm} | N_1, N | \hspace{-0.05cm} \}_{K_A} \text{ to } \{ \hspace{-0.05cm} | N | \hspace{-0.05cm} \}_{K_P}$
- An "unintended service"
 - Attacker needs to compute some value $\circ N_2$ in this case
 - But legitimate party creates such a value

History of Problem, I: Dolev-Yao, 1981

- Separated protocol problem from cryptographic correctness
 - Idealize cryptography
 - Discover attacks due to protocol structure
- Separated behavior into
 - Regular participants (assumed predictable)
 - Active penetrator
- Identified powers of penetrator
 - Controls communication
 - May exploit multiple sessions
 - May apply public keys, some private keys

Focused on secrecy goals

History, II: Logics of Belief

- Regard messages as "utterances," protocol goals as justified beliefs
 - Problem: what utterance does a message convey?
- Inaugurated in great paper, Burrows-Abadi-Needham, 1989
- Semantical issues were subtle
 - Soundness theorems OK
 - Operational meaning of model theory tricky
 - Playground for the logically over-privileged?

History, III: Search

- Regard protocol as state machine
 - Find sequence of events with bad outcome
 - May work backwards
 (more focused, symbolic)
 or forwards
 (faster state examination)
- Protocol search tools
 - Interrogator (mid 80s)
 - NRL Protocol Analyzer (early 90s)
 also allowed pruning via lemmas
- General-purpose model checking

- Process algebras (CSP/FDR: mid 90s)
- Hardware verification tools

Our Approach: A Proof Method

- History:
 - Dolev-Even-Karp (1982)
 - Woo-Lam (early 90s),Bolignano (mid 90s)
 - Schneider, Paulson: CSFW, June 97
 - Strand spaces: November 97
- Strand spaces: Simple model to express
 - Protocol behavior
 - Penetrator powers
 - Protocol goals (authentication, secrecy)
- Methods to prove protocol meets goals

- Discover exact hypotheses for goal
- Unprovable goals suggest attacks
- General theorems about classes of protocol

Modeling Cryptographic Protocols via Strand Spaces

Needham-Schroeder: Undesirable Run

Due to Gavin Lowe (1995)

How the Penetrator Does That, I

How the Penetrator Does That, II

-

Powers of the Penetrator

- Initiate values
 - Texts (nonces, names, etc.)
 - Keys(public, compromised, or invented)
- Construct terms
 - Concatenate given terms
 - Encrypt, given key and plaintext
- Destruct terms
 - Separate concatenated terms
 - Decrypt, given ciphertext and matching decryption key
- Represented as strands

 Sequence of send/receive events by same participant (penetrator in this case)

Strand Spaces

```
• Signed term: a pair (+,t) or (-,t), where t is a term (+,t) means transmission of t (-,t) means reception of t
```

• (Σ, tr) is a *strand space* over A whenever tr is a mapping from Σ to $(\pm A)^*$

```
s \in \Sigma is called a strand
```

$$s \downarrow i$$
 is the i^{th} node, i.e. i^{th} step of s

tr(s) is the trace of s, i.e. the sequence of its events

• E.g. NS responder: tr(s) might be

$$-\{N_a A\}_{K_B}, +\{N_a N_b\}_{K_A}, -\{N_b\}_{K_B}$$

First and last terms received Second term transmitted

Example: NS

- Roles: Initiator, responder; Parameters: A, B, N_a, N_b
 - All terms can be checked
 - Uses K_A to mean "The public key of A"
 - List of terms: (signs depend on role)

$$\{N_a A\}_{K_B}, \{N_a N_b\}_{K_A}, \{N_b\}_{K_B}$$

Values intended to originate uniquely:

$$N_a$$
, N_b

• NSInit[A, B, N_a, N_b]: set of strands with trace

$$+\{N_a A\}_{K_B}, \quad -\{N_a N_b\}_{K_A}, \quad +\{N_b\}_{K_B}$$

• $NSLResp[A, B, N_a, N_b]$:

set of strands with trace

$$-\{N_a A\}_{K_B}, +\{N_a N_b\}_{K_A}, -\{N_b\}_{K_B}$$

Example: Carlsen, I

$$M_3 = \{ |K| N_b A \}_{K_B} \{ |N_a| B K \}_{K_A}$$
$$M_4 = \{ |N_a| B K \}_{K_A} \{ |N_a| \}_K N_b'$$

Example: Carlsen, II

- Roles: Initiator, responder, server; Parameters: A, B, N_a, N_b, K, N_b'
 - B cannot check $\{|N_a B K|\}_{K_A}$ part of M_3 (parameter H)
 - Uses K_A to mean "Long term shared key of A"
- Values intended to originate uniquely:
 - Nonces N_a, N_b, N_b'
 - Session key K
- Obligations of key server: Avoid session keys
 - Already used previously
 - Equal to long-term key K_A
 - Known initially to penetrator

Achieved probabilistically Obligation same for all key server protocols

Example: Carlsen, III

+

• CInit[A, B, N_a, K, N_b']: set of strands with trace

$$+A N_a, -\{N_a B K\}_{K_A} \{\{N_a\}_K N_b', +\{\{N_b'\}_K\}_K\}_K$$

• CResp[$A, B, N_a, N_b, K, N'_b, H$]: set of strands with trace

$$-A N_a$$
, $+A N_a B N_b$, $-\{|K N_b A|\}_{K_B} H$, $+H \{|N_a|\}_K N'_b$, $-\{|N'_b|\}_K$

• CServ[A, B, N_a, N_b, K]: set of strands with trace

$$-A N_a B N_b$$
, $+\{|K N_b A|\}_{K_B} \{|N_a B K|\}_{K_A}$

Subject to obligations on previous slide

The Goals of Protocols

Strands and Security Goals

Strand:

- One principal's experience of one run
- Strand conveys what that principal knows directly
 - He sent and received a sequence of messages
- Protocol goals concern what else has happened
 - Runs of other principals (authentication)
 - Penetrator actions (secrecy)

NS Undesirable Run: Why is this Failure?

+

A Needham-Schroeder protocol goal:

```
For every B-strand (apparently with A), there is an A-strand (apparently with B), and they agree on the nonces N_1, N_2
```

• The attack shows:

There can be a B-strand apparently with A, but no A-strand apparently with B

- Authentication establishes a sound inference:
 - From B's local experience, a conclusion about A's behavior follows
- Secrecy of N_a : no strand utters it unencrypted

Epistemology of Protocols

- What can a principal know directly?
 - The send/receive events on its strand
- What can a principal assume reasonably?
 - Penetrator abilities
 - Behaviors of other principals
 - Origination assumptions
- What can a principal infer?
 - Real world must contain events that caused what he saw
 - Message he received was sent by someone
 - Can sometimes infer specific other strands are present
- Bundle definition tailored to model these inferences

Authentication Goals: Example I

• Consider bundle C in which B undergoes s_r with trace

$$-\{N_a A\}_{K_B}, +\{N_a N_b\}_{K_A}, -\{N_b\}_{K_B}$$

B knows that s_r is in $\mathcal C$

+

Responder's guarantee that initiator participated

If
$$\mathcal{C}$$
 contains $s_r \in \mathsf{NSLResp}[A, B, N_a, N_b]$

then
$$\mathcal{C}$$
 contains some $s_i \in \mathsf{NSLInit}[A, B, N_a, N_b]$

(subject to some origination assumptions)

 This goal is false; counterexample is bundle on slide 14

Needham-Schroeder-Lowe Protocol

Summary of this Introduction

- How crypto protocols fail
- The Dolev-Yao problem
 - Idealize crypto
 - Powerful penetrator
 - Find authentication, confidentiality properties
- Strand spaces

+

- Modeling protocols
- Some definitions
- Formalizing security goals